- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Pacheco, Helen R (1)
-
Reynoso, Jennifer Rodriguez (1)
-
Rodriguez, Keely M (1)
-
Tenneti, Megha M (1)
-
Voyles, Jamie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The field of ecological immunology, or ecoimmunology, has provided valuable insights on the immune responses of diverse host organisms threatened by infectious diseases in many different environments. One infectious disease that has been particularly notable for its impacts on host populations is amphibian chytridiomycosis, which has been linked with amphibian declines around the world. Amphibian immune responses to the pathogen that causes chytridiomycosis (Batrachochytriym dendrobatidis) are not well understood but thought to involve innate immune factors, including the complement system. In this study, we tested the ability of complement proteins to inhibitB. dendrobatidisinin vitrochallenge assays. We found that complement proteins from amphibian plasma that were not heat inactivated reduced the viability and growth ofB. dendrobatidis.The inhibitory efficacy was similar to effects onPseudomonas fluorescens, a bacterium that is known to be inhibited by complement protein activation. These findings suggest inhibition ofB. dendrobatidisthat is consistent with the involvement of the complement system. In addition, we provide methods for standardizing pathogen killing assays, and set a foundation for further investigations on the amphibian complement system and other immune responses to amphibian chytridiomycosis.more » « less
An official website of the United States government
